Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nanomedicine ; 45: 102590, 2022 09.
Article in English | MEDLINE | ID: covidwho-2015871

ABSTRACT

The positive single-stranded nature of COVID-19 mRNA led to the low proof-reading efficacy for its genome authentication. Thus mutant covid-19 strains have been rapidly evolving. Besides Alpha, Beta, Gamma, Delta, and Omicron variants, currently, subvariants of omicron are circulating, including BA.4, BA.5, and BA.2.12.1. Therefore, the speedy development of a rapid, simple, and easier diagnosis method to deal with new mutant covid viral infection is critically important. Many diagnosis methods have been developed for COVID-19 detection such as RT-PCR and antibodies detection. However, the former is time-consuming, laborious, and expensive, and the latter relies on the production of antibodies making it not suitable for the early diagnosis of viral infection. Many lateral-flow methods are available but might not be suitable for detecting the mutants, Here we proved the concept for the speedy development of a simple, rapid, and cost-effective early at-home diagnosis method for mutant Covid-19 infection by combining a new aptamer. The idea is to use the current lateral flow Covid-19 diagnosis system available in the market or to use one existing antibody for the Lateral Flow Nitrocellulose filter. To prove the concept, the DNA aptamer specific to spike proteins (S-proteins) was conjugated to gold nanoparticles and served as a detection probe. An antibody that is specific to spike proteins overexpressed on COVID viral particles was used as a second probe immobilized to the nitrocellulose membrane. The aptamer conjugated nanoparticles were incubated with spike proteins for half an hour and tested for their ability to bind to antibodies anchored on the nitrocellulose membrane. The gold nanoparticles were visualized on the nitrocellulose membrane due to interaction between the antigen (S-protein) with both the aptamer and the antibody. Thus, the detection of viral antigen can be obtained within 2 h, with a cost of less than $5 for the diagnosis reagent. In the future, as long as the mutant of the newly emerged viral surface protein is reported, a peptide or protein corresponding to the mutation can be produced by peptide synthesis or gene cloning within several days. An RNA or DNA aptamer can be generated quickly via SELEX. A gold-labeled aptamer specific to spike proteins (S-proteins) will serve as a detection probe. Any available lateral-flow diagnosis kits with an immobilized antibody that has been available on the market, or simply an antibody that binds COVID-19 virus might be used as a second probe immobilized on the nitrocellulose. The diagnosis method can be carried out by patients at home if a clinical trial verifies the feasibility and specificity of this method.


Subject(s)
Aptamers, Nucleotide , COVID-19 , Metal Nanoparticles , Antibodies , Antigens, Viral , COVID-19/diagnosis , COVID-19 Testing , Collodion , Gold , Humans , RNA , RNA, Messenger , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
2.
Chem Rev ; 121(13): 7398-7467, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1243272

ABSTRACT

RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.


Subject(s)
Nanomedicine/methods , Neoplasms/drug therapy , RNA Stability , RNA/chemistry , Animals , Humans , Molecular Targeted Therapy , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL